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Stability of the order-order critical points of Heisenberg and nematic model fluids
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Recently it was found that Heisenberg and nematic model fluids exhibit, for a range of~negative! values of
the ratioR of anisotropic to isotropic interaction strengths, a new type of critical point corresponding to the
terminus of a first-order phase transition between two orientationally ordered liquids with different densities. In
this paper we present a more systematic and detailed study of these order-order critical points~OOCPs!. We
start by deriving the equations for the OOCPs and solve them numerically, within a mean-field~MF! approxi-
mation for the free energies of either model. We then investigate local stability by expanding the free energies
in powers of the order parameter, about the lines of OOCPs. In addition, we examine the stability of the
OOCPs with respect to the ordered-liquid–ordered-solid transition~global stability!, by bifurcation analysis.
We conclude that the MF OOCPs are locally and globally stable over a range ofR,0 which is much broader
in the case of the Heisenberg fluid, where the ordering transition is continuous. Here the line of OOCPs ends
at a fourth-order critical point on the Curie line, whereas that of the model nematic ends at a critical end point
on the nematic-isotropic coexistence curve. Finally, we discuss the relationship between our approach to the
stability of critical points and Landau theory.@S1063-651X~98!07309-7#

PACS number~s!: 61.20.Gy, 64.60.Cn, 71.10.2w
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I. INTRODUCTION

Two of the simplest model fluids with anisotropic inte
actions are the ferromagnetic Heisenberg fluid~FHF! @1# and
the Maier-Saupe liquid crystal~MSLC! @2#, characterized,
respectively, by the pair potentials@3#

fFHF~r12,v1 ,v2!

5H 1` if r<s

2I FHF~r 12!2JFHF~r 12!P1@cos~v1 ,v2!# if r .s

~1!

and

fMSLC~r12,v1 ,v2!

5H 1` if r<s

2I MSLC~r 12!2JMSLC~r 12!P2@cos~v1 ,v2!# if r .s,

~2!

wherer12 is the intermolecular vector of lengthr 12, v i is the
set of orientational coordinates~Euler angles! of moleculei ,
s is the diameter of the~spherical! hard core,Pk(x) is the
kth Legendre polynomial, andJ(r 12) and I (r 12) are the ra-
dial parts of, respectively, the anisotropic and the~soft! iso-
tropic interactions.

Both models exhibit orientationally ordered liquid phas
at high enough densities or low enough temperatures,
former is a ferromagnet@1,4–6#, and the latter a nemati
@2,7#. Extensive mean-field~MF! calculations have shown
that the overall topology of their phase diagrams depe
sensitively on the ratioR of the integrated strengths of th
isotropic and anisotropic interactions, given by
PRE 581063-651X/98/58~3!/3175~12!/$15.00
:
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R5
*dr12J~r 12!

*dr12I ~r 12!
5

Jint

I int
. ~3!

In particular,R determines what types of critical points ob
tain. These findings are summarized in Tables I and II
21.04,R,0 there is no liquid-vapor (L-V) coexistence, as
the anisotropic attractions are insufficient to drive conden
tion for such strong isotropic repulsions. In the case of
FHF, varying therangesof I (r 12) andJ(r 12) shifts the cross-
overs to different values ofR @6# and allows a given type o
diagram to be generated in different ways@8#, but does not
otherwise introduce any new physics. Interestingly, the sa
topologies as the FHF’s~for R.0! have surfaced in a Monte
Carlo and MF probe of a symmetrical binary fluid mixtur
where the role ofR is played by the relative strength o
interactions between unlike and like species. This somew
unexpected convergence of behaviors was explained, wi
Landau theory, by realizing that in either model the dens
is coupled with a ‘‘spinlike’’ internal degree of freedom@9#.

The possibility, within both MF@5# and modified MF@6#
theories, of an order-order critical point~OOCP! in the FHF
or the MSLC characterized by softrepulsiveisotropic inter-
actions (I int,0), is noteworthy. However, this has only bee
corroborated by a mean spherical approximation study o
purely anisotropicFHF (I int50) @10#, for which simulation
evidence is available but~inconclusively! seems to favor a
tricritical point instead@4#. OOCPs where the ordered phas
arenematichave been predicted to occur in systems of ro
like particles with added attractions@11–17#; it is as yet un-
clear whether these have been observed experimentally@18–
20#. In the one model that has been simulated, namely, h
spherocylinders with attractive square wells, nema
nematic (N-N) coexistence is preempted by the formation
a smectic-A phase@17#. By contrast, in neither the FHF no
3175 © 1998 The American Physical Society



rio
l

3176 PRE 58J. M. TAVARES, P. I. C. TEIXEIRA, AND M. M. TELO da GAMA
TABLE I. Topology of the phase diagram of the FHF from MF theory@1,5#. A refined calculation using
modified MF theory@6# yields crossovers at different values ofR than MF, but does not change the scena
qualitatively. CEP: critical end point; TCP: tricritical pointL-V: liquid-vapor, OOCP: order-order critica
point.
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the MSLC is there coupling between orientational and po
tional degrees of freedom, and for that reason they do
form smectic phases@21#. If real, the OOCP would be the
orientational analog of the solid-solid critical points found
Cs, SmS, and Ce-Th mixtures@22–26#; in Monte Carlo stud-
ies of model colloids@27,28#; and theoretically@29–44#.

In previous work we used molecular theory to calcula
the different types of phase diagram for both the FHF@5,6#
and the MSLC@7#, and discussed the criticality of the forme
in detail @5#. Here we explicitly locate the OOCPs as a fun
tion of R, and investigate their stability, both local and gl
bal. This paper is organized as follows. In Sec. II we der
the equations for the OOCP in a general fluid with ani
tropic interactions; these are then solved numerically, wit
the MF approximation, for the two models under consid
ation. In Sec. III we examine the local stability of the prev
ously computed OOCPs by expanding the free energy d
sities about them. Then in Sec. IV we calculate the limit
stability of the ordered liquid phases of the FHF and MS
with respect to the corresponding ordered solids; beca
neither model exhibits a smectic phase, this allows us
proximately to check the global stability of the OOCPs. F
nally in Sec. V we summarize our conclusions, and disc
the relationship between our approach to local stability a
the more common analysis in terms of Landau theory.

II. CRITICALITY

Let f [ f (r,h,T) be the Helmholtz free energy densi
~FED! of a fluid characterized by the~uniform! densityr, the
order parameterh, and the temperatureT. Then criticality is
studied by considering the stability matrixM @5#:

TABLE II. Topology of the phase diagram of the MSLC from
MF theory @2,7#. Unlike in the FHF, the ordering transition is a
ways first order. Abbreviations as in Table I.

R Critical point

0,R,0.79 ~@7#, Fig. 1! IsotropicL-V
R.0.79; R,21.64 ~@7#, Fig. 3! None
21.64,R,21.04 ~@7#, Fig. 3! OOCP
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M5S S ]2f

]r2D
h

]2f

]r]h

]2f

]r]h
S ]2f

]h2D
r

D .

The first necessary condition to have a critical point is t
the determinant ofM vanish:

det M5S ]2f

]r2D
h
S ]2f

]h2D
r

2S ]2f

]r]h D 2

50. ~4!

This is the two-dimensional@in ~r,h! space# generalization of
the requirement that the compressibility diverge at theL-V
critical point.

In order to establish a second necessary condition,
need to find the eigenvector (u,v) corresponding to the zero
eigenvalue ofM . This is

~u,v !5S 1,2
M11

M12
D or ~u,v !5S 2

M12

M22
,1D . ~5!

(u,v) defines a direction in~r,h! space that can be param
etrized by d ~see Fig. 1!. For an isotropic critical point,
(u,v)5(1,0) ~because allMi j 50 exceptM22!; and for a
point on the order-disorder line, (u,v)5(0,1) ~because all
Mi j 50 exceptM11!. In the present case of an OOCP, no
of the elements ofM is zero, and so we have to use one
the general expressions of Eq.~5!. This yields the condition
that the third derivative off along the direction (u,v) vanish
at the critical point, i.e.,

u3S ]3f

]r3D
h

13u2v
]3f

]r2]h
13uv2

]3f

]r]h2 1v3S ]3f

]h3D
r

50.

~6!

The third and final condition is that in zero field, the FE
must not contain any linear dependence on the order par
eter:

S ] f

]h D
r

50. ~7!



-
f
t

on

e

e

,
-
m
e

ec

but

-

e
e

PRE 58 3177STABILITY OF THE ORDER-ORDER CRITICAL . . .
The critical point (rc ,hc ,Tc) can now be found by solv
ing Eqs.~4!, ~6!, and~7! simultaneously, for given choices o
interaction parameters. We thus require expressions for
FEDs of the FHF and the MSLC. In the spirit of perturbati
theory, let us write the intermolecular potential as

f~r12,v1 ,v2!5f ref~r12!1fp~r12,v1 ,v2!, ~8!

where f ref(r12) is the hard-sphere~HS! ‘‘reference’’ part,
and fp(r12,v1 ,v2) the longer-ranged ‘‘tail’’ of either
fFHF(r12,v1 ,v2) or fMSLC(r12,v1 ,v2) in Eq. ~1! or ~2!,
respectively. The MF Helmholtz free energy is then

F@r~r ,v!#5Fref@r~r ,v!#1
1

2 E dr1dv1dr2dv2

3r~r1 ,v1!fp~r12,v1 ,v2!r~r2 ,v2!, ~9!

where r(r ,v) is the density-orientational profile. The fre
energy of the reference system,Fref@r(r ,v)#, consists of
ideal-gas and excess contributions, the latter due to the
cluded volume interaction:

Fref@r~r ,v!#5b21E drdvr~r ,v!$ ln@L3r~r ,v!#21%

1FHS
exc@r~r !#, ~10!

whereb51/kBT, L is the thermal de Broglie wavelength
r(r )5*dvr(r ,v), and the orientational entropy is de
scribed in the random-mixing approximation. In a unifor
~or weakly nonuniform! fluid, the excess free energy can b
treated in a local approximation~but see Sec. IV below!:

FHS
exc@r~r !#5E drr~r !C„r~r !…, ~11!

with C~r! an excess HS free energy per particle, to be sp
fied later.

FIG. 1. Schematic representation of the direction (u,v), fixed
for each critical point, and along which the free energy is expand
This direction is parametrized byd, the order parameter of th
transition, which is linearly related tor andh i .
he

x-

i-

The free energy density of an orientationally ordered,
positionally disordered, phase of densityr, is now

f ~r,h!5 f HS~r!1rb21^ ln@4p f̂ ~v!#&2
1

2
I intr

2

2
1

2
Jintr

2h i
2 , ~12!

where f HS(r)5rb21@ ln(L3r)21#1rC(r), f̂ (v)5r(v)/r
is the orientational distribution function~ODF!, and ^A&
5*dvA f̂(v). In Eq. ~12!, h i is the orientational order pa
rameter, defined as

h i5E Pi~cosu! f̂ ~v!dv. ~13!

( i 51 for the FHF andi 52 for the MSLC.! Minimizing the
FED with respect to the ODF~see, e.g.,@2#!, we obtain

f̂ ~v!5
exp@bJintrh i Pi~cosu!#

* exp@bJintrh i Pi~cosu!#dv
. ~14!

Substitution of Eq.~14! into Eq. ~12! yields, for the equilib-
rium FED,

f ~r,h i !5 f HS~r!2
1

2
I intr

21
1

2
Jintr

2h i
22rb21a~bJintrh i !,

~15!

where

aFHF~x!5 lnS sinh x

x D , ~16!

aMSLC~x!5 lnF DSA3

2
xD

A3

2
x

G , ~17!

andD(x)5exp(2x2)*0
x exp(t2)dt is Dawson’s integral.

For consistency with previous work@5–7#, we take

I FHF~r 12!5e isoS s

r 12
D 6

, ~18!

JFHF~r 12!5eani

e2~r 12 /s21!

r 12/s
, ~19!

bCFHF~r!5j
423j

~12j!2 , ~20!

I MSLC~r 12!5e isoS s

r 12
D 6

, ~21!

JMSLC~r 12!5eaniS s

r 12
D 6

, ~22!

d.
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FIG. 2. ~a! Reduced densityr* 5rs3; ~b! reduced temperaturet5kBTcs
3/JFHF,int; and~c! order parameterh1 at the OOCP of the FHF.
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bCMSLC~r!5rF2 ln~12j!1
6j29j213j3

2~12j!3 G . ~23!

Equations ~20! and ~23! are, respectively, the Carnaha
Starling @45# and Percus-Yevick~compressibility! @46,47#
approximations to the excess FED of a HS liquid, andj
5prs3/6 is the packing fraction.

In what follows all results are given in terms of the r
duced density r* 5rs3 and reduced temperaturet
5kBTs3/Jint . In subscripts, ‘‘c’’ will be used as an abbre
viation of ‘‘OOCP.’’

Figure 2 shows the density, temperature, and order par
eter at the OOCP of the FHF, as functions ofR. In an earlier
paper@5# we found that the OOCP should transform into
tricritical point on the Curie line~the locus of continuous
disorder-order transitions of the FHF model, given
brJFHF,int53!, at a fourth-order critical point@48# character-
m-

ized byR5R4th. This is borne out by Fig. 3, where we plo
the quantity x5bcrcJFHF,int; clearly x→3 as R→R4th'
225.2.

In the MSLC the corresponding line of continuou
disorder-order transitions isbrJMSLC,int55, but this is al-
ways inside the nematic-isotropic (N-I ) coexistence region
@7#, thence a less rich critical behavior, see Table II. In Fig
we show densities, temperatures, and order parameters a
OOCP and at theN-N-I triple point. In contrast to the FHF
there are now two branches of OOCPs; the lower bra
~dotted lines! lies outside the region whereN-N coexistence
is possible@see Fig. 4~a!# and is therefore unphysical~in
addition, we shall see in the next section that it is also loca
unstable!. The same is true of that part of the upper bran
for which R&21.64. We conclude that the line of OOCP
for the MSLC ends at a critical end point on theN-N coex-
istence curve. One further difference between the FHF
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PRE 58 3179STABILITY OF THE ORDER-ORDER CRITICAL . . .
the MSLC is apparent from comparison of Figs. 3 and 5~a!:
in the latter, the line of OOCPs does not approach the line
disorder-order transitions,x55. This is illustrated in Fig.
5~b!, which plotsrc* vs tc .

III. LOCAL STABILITY

One of the methods employed in@5# to investigate the
existence of OOCPs in the FHF was to perform an expan
of the FED about the Curie line, or the tricritical point, an
analyze the signs of the first six coefficients of that exp
sion @49#. This enabled us to state that for 0.63,R,` we
have a tricritical point, and forR'225.2 a fourth-order
point. For 0.R*225.2 the tricritical point becomes un
stable and so a new type of criticality must appear. In
preceding section, we explicitly calculated the OOCPs; th
correspond to solutions of Eqs.~4!, ~6!, and~7! with hcÞ0
andbcrcJint.3 or 5, and so their stability cannot be studi
by examining an expansion about the order-disorder line
which hc50; one has to generalize this expansion to n
zero hc . To obtain the original expansion about the Cu
points, the Helmholtz FED, Eq.~15!, was first Legendre
transformed to a new thermodynamic potential with va
ablesh ~the order parameter of the transition!, m ~the field
corresponding to the other density!, andT. This new poten-
tial, denotedgh(h,m,T), was then expanded in powers ofh,
and, because the derivatives ofgh with respect toh were
taken at constantm, the coefficients of the expansion cou
be written in terms of derivatives off (r,h) with respect to
both h andr. In the present problem, one might expand
appropriate thermodynamic potentialgd in the order param-
eter of the OOCP,d ~see Fig. 1!. However, for each OOCP
~i.e., for eachR! the direction (u,v) is fixed in ~r,h! space.
Therefored is linearly related to bothh andr, and one can
perform instead an expansion inh or in r, usinggh(h,m,T)
or gr(r,H,T). Here we calculate the expansion
gh(h,m,T) in h abouthc , but it can be shown that the sam

FIG. 3. x5bcrcJFHF,int vs R for the FHF.x approaches 3 asR
→225.2, meaning that the OOCP is approaching the Curie l
and hencehc→0.
of

n

-

e
y

n
-

-

results~for coexistence and criticality! follow from an expan-
sion of gr(r,H,T) in r.

At constantm andT, we then have@49#

gh~h,m,T!5 (
n50

`

Anh̃n, ~24!

whereh̃5h2hc , and

An5
1

n! S ]ngh

]hn D
T,m

. ~25!

The coefficientsAn are to be evaluated at the OOC
(rc ,hc). A1 is, of course, the applied field, which can b
calculated in terms ofr andh using Eq.~15!:

A15S ]gh

]h D
T,m

5S ] f

]h D
r

5H~r,h!. ~26!

The other coefficients can also be written in terms ofr andh
by applying the operatorQ to the fieldH(r,h):

Q5S ]

]h D
T,m

5F S ]

]h D
r

2
]2f /]r]h

~]2f /]r2!h
S ]

]r D
h
G . ~27!

In the Appendix we collect the expressions forA2 , A3 , and
A4 . Notice that Eq.~4! and the vanishing ofA2 , and Eq.~6!
and the vanishing ofA3 , give rise to equivalent conditions
In the spirit of Landau theory@49#, A2 is now expanded in
powers ofT2Tc @50#:

A2~T!5A2~Tc!1
1

2 F ]

]T S ]2f

]h2D
r

22Y
]

]T

]2f

]r]h

1Y2
]

]T S ]2f

]r2D
h
G ~T2Tc!, ~28!

with Y5(]2f /]r]h)/(]2f /]r2)h . Using the fact thatA2
and A3 vanish at the critical point, Eq.~24! with Eq. ~15!
gives, to fourth order,

f 5A0~Tc ,rc ,hc!1a2~Tc ,rc ,hc!~T2Tc!h̃
2

1A4~Tc ,rc ,hc!h̃
4, ~29!

where

a2~Tc ,rc ,hc!5
1

2 H F ]

]T S ]2f

]h2D
r
G

Tc ,rc ,hc

22YS ]

]T

]2f

]r]h D
Tc ,rc ,hc

1Y2F ]

]T S ]2f

]r2D
h
G

Tc ,rc ,hc

J . ~30!

Minimizing Eq. ~29! with respect toh, we find as usual

,
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FIG. 4. ~a! Reduced densityr* 5rs3; ~b! reduced temperaturet5kBTs3/JMSLC,int ; and ~c! order parameterh2 of the MSLC. Solid
lines: locally stable branch of OOCPs; dotted lines: locally unstable branch of OOCPs. Dashed lines: same quantities at theN-N-I triple
point.
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h̃56Aa2~Tc ,rc ,hc!~Tc2T!

2A4~Tc ,rc ,hc!
. ~31!

From the linear dependence of~r,h! on d, it is possible to
find a relation betweenh andr in the vicinity of the OOCP:

r̃5S ~]2f /]h2!r

]2f /]r]h D
Tc ,rc ,hc

h̃. ~32!

Numerical results are presented in Fig. 6. For the FH
A4(Tc ,rc ,hc) is always positive and approaches zero w
vanishing slope asR→R4th'225.2, corresponding to a lo
cally stable OOCP over the whole range ofR for which it
exists ~see preceding section!. For the MSLC,
A4(Tc ,rc ,hc).0 along the upper branch of OOCPs, whi
are thus locally stable whenever physical (R.21.64);
whereas the lower branch hasA4(Tc ,rc ,hc),0 and is
,

therefore unstable, as announced in the preceding sec
The two branches are connected atR'21.91, where the
slope of the curve is infinite~however, this point lies in the
unphysical region!.

IV. STABILITY WITH RESPECT TO THE SOLID PHASE

The analysis of the stability of the OOCP will only b
complete with a study of stability relative to the solid pha
~global stability!, i.e., of whether fluid-solid coexistence pre
empts coexistence of two ordered fluids for any of the val
of R for which the OOCP is locally stable. At first sight, th
would not appear to be possible. Indeed, it is short-ra
repulsive interactions that play the main role in the freez
transition, and freezing of HS does not occur untilr*
'0.945@51#, which is far above all OOCP densities of eith
of our models. Nonetheless, the present OOCPs are obta
for systems with softrepulsiveisotropic interactions, which
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may drive down the freezing density.
The easiest way to tackle this problem would be to wr

down the free energy as in Eq.~15!, changing only the form
of the excess HS part to a solid parametrization. Suc
procedure was employed in@1# for the FHF, but for different
values ofR than the ones we are interested in. A more ela
rate way of deriving an equation of state for the solid can
found in @32,33#, where the interaction part is treated in d
ferent ways in the liquid and solid phases. However, in b
approaches the main features of the solid-liquid transition
determined by the parametrizations chosen for the HS~liquid
or solid! equation of state.~A recent van der Waals theory o
the FHF including solid phases@8# did not extend toR,0.!
In @52# and @53#, density-functional theories of the freezin
transition are proposed. Both provide solid equations
state, and thus enable one to calculate coexistence lines
at present we are simply interested in the stability of a fl

FIG. 5. ~a! x5bcrcJMSLC,int vs R for the MSLC. Solid line:
locally stable branch; dotted line: locally unstable branch. In c
trast to the FHF~cf. Fig. 3!, hc is always finite.~b! rc* (5rcs

3) vs
tc (5kBTcs

3/JMSLC,int); the straight dashed line is the limit of ab
solute stability of the isotropic phase with respect to the nema
x55.
a

-
e

h
re

f
As
d

phase with respect to the solid, rather than in characteriz
the fluid-solid transition, we will use none of the above the
ries, but the simpler bifurcation analysis@54,55#. Here one
calculates just the limit of stability of one phase~liquid! with
respect to another~solid!, and not coexistence betwee
phases.

The bifurcation analysis we adopt has been applied
some transitions in liquid crystal models@54,55#. It states
that, if rA(r ,v) is an equilibrium density profile of phaseA,
rB(r ,v) an equilibrium density profile of phaseB, and
drAB(r ,v) the difference between the density profiles of t
two phases, then phaseA will be stable with respect to phas
B when

E dr1dv1dr2dv2drAB~r1 ,v1!drAB~r2 ,v2!

-

c,

FIG. 6. Reduced fourth-order coefficienty5bcA4(Tc ,rc ,hc)
of the FED expansion about the OOCP for~a! the FHF and~b! the
MSLC; it vanishes on the Curie line. In~b! the dotted line corre-
sponds to the unstable branch of OOCPs.
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3
d2F@r~r ,v!#

dr~r1 ,v1!dr~r2 ,v2!
U

r~r ,v!5rA~r ,v!

>0.

~33!

We are interested in the stability of an ordered liquid@phase
A: rA(r ,v)5rL f̂ L(v)# with respect to an ordered soli
@phaseB: rB(r ,v)5rS(r ) f̂ S(v)#. In Sec. II we used the
simplest, local, approximation for the excess free energy
the HS fluid, Eq.~11!. This is inappropriate when the densi
is strongly inhomogeneous~and can reach very large value
where conventional bulk equations of state break down!, as
is the case in a solid. We therefore resort to the simp
nonlocal scheme, the smoothed-density approximat
~SDA! of Tarazona@52# for HSs:

FHS
exc@r~r !#5E drr~r !C„r̄~r !…. ~34!

Here r̄(r ) is a functional of the density and has the form

r̄~r !5E dr 8w~ ur2r 8u!r~r 8!, ~35!

where the weighting functionw(ur2r 8u) is the quotient be-
tween the Mayer function of two HSs and the second vi
coefficient of the HS fluid:

w~r !5H 3

4ps3 , r ,s

0, r>s,

~36!

which corresponds to ‘‘smearing’’ any peaks inr~r ! over the
excluded volume of a pair of HSs. We shall retain the sa
expressions forC~r!, Eqs.~20! and ~23!.

By analogy with@56#, drLS(r ,v) are expanded as prod
ucts of Fourier and spherical harmonics series:

drLS~r ,v!5rL f̂ L~v!(
q

(
l 50

`

(
m52 l

l

mqlm

3exp~2 iq•r !Ylm~v!, ~37!

whereq is a reciprocal lattice vector of the Bravais lattic
characterizing the solid phase, andYlm(v) are spherical har-
monics describing the difference between the orientatio
structures of the two phases~only evenl are allowed in the
case of a MSLC!. Furthermore, we expand the ODF of th
liquid in Legendre polynomials:

f̂ L~v!5 (
l50

`
2l11

4p
hlPl~cosu!. ~38!

@As in Eq. ~37!, for the MSLC only evenl are allowed.#
Inserting Eq.~37! into Eq.~33! and performing the secon

functional derivative ofF@r(r ,v)#, given by Eq.~9! with
Eqs.~10! and~34!, we find, after straightforward but tediou
algebra, that for each wave vectorq the ordered liquid will
be stable relative to an ordered solid when the follow
quadratic form inmqlm is positive definite:
f

st
n

l

e

al

(
l 1 ,l 2

(
m1

mql 1m1
mql 2m1

* Y l 1l 2

m1 ~r,q!>0, ~39!

where

Y l 1l 2

m1 ~r,q!5
b21r

4p
@~2l 111!~2l 211!#1/2~21!m1

3 (
l50

1`

C~ l 1l 2l;000!C~ l 1l 2l;m1m10!hl

1
r2

4p
@~2l 111!~2l 211!#1/2@J~r,q!

2I ~q!#h l 1
h l 2

dm10

2
r2

4p
J~q!~21! l 11 l 2@~2l 111!~2l 211!#1/2

3 (
l1 ,l250

1`

~21!l11l2C~ i l 1l1 ;000!

3C~ i l 1l1 ;m1m10!C~ i l 2l2 ;000!

3C~ i l 2l2 ;m1m10!hl1
hl2

, ~40!

where m152m1, C( j 1 j 2 j ;n1n2n) are Clebsch-Gordan
~CG! coefficients in the notation of@57# and, as before,i
51 for the FHF andi 52 for the MSLC~in the latter case,
summations are over evenl k or lk only!. I (q) andJ(q) are
the Fourier transforms ofI (r ) andJ(r ):

I FHF~q!5E dr exp~2 iq•r !I FHF~r !

53JFHF,int~qs!3E
qs

` sin y

y5 dy, ~41!

JFHF~q!5E dr exp~2 iq•r !JFHF~r !

5
JFHF,int

2qs

sin~qs!1qs cos~qs!

11~qs!2 , ~42!

I MSLC~q!5E dr exp~2 iq•r !I MSLC~r !

53I MSLC,int~qs!3E
qs

` sin y

y5 dy, ~43!

JMSLC~q!5E dr exp~2 iq•r !JMSLC~r !

53JMSLC,int~qs!3E
qs

` sin y

y5 dy, ~44!

with I int54pe isos
3/3, Jint54peanis

3/3. In Eq.~40!, J(r,q)
is the Fourier transform of the second functional derivat
of Eq. ~34!:

J~r,q!52C8~r!w~q!1rC9~r!w2~q!, ~45!
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wherew(q) is the Fourier transform of the weighting func
tion, Eq. ~36!:

w~q!5
3

~qs!3 @sin~qs!2~qs!cos~qs!#. ~46!

The sums in Eq.~40! need to be truncated for practic
purposes. A natural assumption is to retain in the expan
of drLS(r ,v) the lowest-order terms with the rotational sym
metry of the order parameters. This amounts to the res
tions l 1 ,l 250,1 ~FHF! or l 1 ,l 250,2 ~MSLC!. It then follows
from the properties of CG coefficients that the sums overlk
terminate at 2~FHF! or 4 ~MSLC!.

The limit of stability of the ordered liquid relative to
perturbation with the symmetry of an ordered solid w
wave vectorq is attained when the determinant ofY in Eq.
~39! changes sign. Noting thatY l 1l 2

m1 5(m2
Y l 1l 2

m1m2dm1m2
, Y

can be treated as a rank 2 tensor with indices (l 1 ,m1) and
( l 2 ,m2), such thatY l 1l 2

m1m2dm1m2
50 unlessm15m2 . After

lengthy computations, the requirement that detY change
sign translates into

Y00
0 Y11

0 5Y10
0 Y01

0 ~FHF!, ~47!

Y00
0 Y22

0 5Y20
0 Y02

0 ~MSLC!, ~48!

where we have used the fact that, by symmetry,Y i i
i 5Y i i

2 i

( i 51 or 2 for the FHF or MSLC, respectively!. Equation
~40! then yields, for the FHF,

Y00
0 5

b21r

4p
1

r2

4p
@JFHF~r,q!2I FHF~q!#2

r2

4p
JFHF~q!h1

2 ,

~49!

Y11
0 5

b21r

4p
~112h2!1

3r2

4p
@JFHF~r,q!2I FHF~q!#h1

2

2
r2

4p
JFHF~q!S 1

3
1

4

3
h21

4

3
h2

2D , ~50!

Y10
0 5Y01

0 5
)b21r

4p
h11

)r2

4p
@JFHF~r,q!2I FHF~q!#h1

2
)r2

4p
JFHF~q!S 1

3
h11

2

3
h1h2D , ~51!

and, for the MSLC,

Y00
0 5

b21r

4p
1

r2

4p
@JMSLC~r,q!2I MSLC~q!#

2
r2

4p
JMSLC~q!h2

2 , ~52!

Y22
0 5

b21r

4p S 11
10

7
h21

18

7
h4D1

5r2

4p
@JMSLC~r,q!
n

c-

2I MSLC~q!#h2
22

r2

4p
JMSLC~q!S 1

5
1

4

7
h21

36

35
h4

1
20

49
h2

21
72

49
h2h41

324

245
h4

2D , ~53!

Y20
0 5Y02

0 5
A5b21r

4p
h21

A5r2

4p
@JMSLC~r,q!

2I MSLC~q!#h22
A5r2

4p
JMSLC~q!

3S 1

5
h21

2

7
h2

21
18

35
h2h4D . ~54!

For fixed T and R, Eqs. ~47! and ~48! define implicit
relations betweenr and q. The limit of stability ~i.e., the
density above which the ordered liquid becomes unstable! is,
within bifurcation theory, the minimum of the curver
5r(q). Calculation of this minimum using Eq.~47! or ~48!
generates two conditions that must be solved, together w
Eq. ~47! or ~48!, to find the modulus of the wave vectorqm
that destroys the stability of the ordered liquid phase at
lowest density, at a temperatureT and for the model charac
terized byR. Recall that with this theory we merely calcula
the limit of stability of the liquid with respect to a solid o
the same density~the undercooling branch of the liquid-soli
spinodal!, and not a coexistence curve: the coexistence d
sity of the ordered liquid with the ordered solid will be
little lower. Furthermore,Y depends onqm5uqmu only; this
is a consequence of the decoupling of orientational and
sitional degrees of freedom in the present models~see Sec.
I!. qm5uqmu gives the lattice constant of the metastable so
that bifurcates from the liquid, but the full symmetry of th
solid lattice can only be determined by going to second or
in perturbation theory~which is beyond the scope of thi
paper! @58#. Finally, if r(q) should exhibit several minima
the physically relevant one will be atqm;2p/s, corre-
sponding to the main peak in the structure factor@58#.

Results are plotted in Fig. 7. The dashed lines repres
the critical densitiesrc* and temperaturestc for 225.2,R
,21.04~FHF! and21.64,R,21.04~MSLC!; these have
been calculated in Sec. II above. The solid lines are the
bility limits rstab* for the same values ofR and T. At high
temperatures~which correspond to largeuRu!, the OOCPs are
stable relative to the solid phases, sincerc* !rstab* : the
former is typicallyrc* .0.3 and the latterrstab* .0.8 ~FHF! or
rstab* .0.65 ~MSLC!. For smalleruRu ~and, correspondingly
lower temperatures!, rstab* of the FHF decreases abrupt
~aroundR.22.5!; no such trend is evident in the case of t
MSLC. WhenR521.35 ~FHF! or R521.24 ~MSLC!, we
start to haverstab* ,rc* ~FHF! or rstab* ,rtri* ~MSLC! ~where
r tri* is the density of the denser of the twoN phases at the
N-N-I triple point!, meaning that at theseR’s the OOCPs
become unstable relative to the solid phases, even if they
stable relative to the other fluid phases up toR521.04. This
signals a crossover from liquid-solid to vapor-solid coexi
ence at low temperatures.
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V. CONCLUSIONS

We have systematically calculated, and investigated
stability of, OOCPs found previously in molecular field the
ries of model ferroelectric and nematic fluids. Furthermore
has been established that the OOCPs are both locally
globally stable over most of the range of temperature
potential parameters for which they exist and are physic
meaningful.

The local stability analysis of Sec. III was based on
series expansion of theequilibriummicroscopic free energy
Eq. ~15!, about the line of OOCPs and inspection of t
fourth-order coefficient. This is standard procedure when
system under study is described by a Landau free energ
the present case, however, the expression we use, Eq.~29!, is

FIG. 7. Reduced densitiesr* 5rs3 at the OOCP~solid line!
and at the limit of stability of the ordered liquid phase relative
solid fluctuations~dash-dotted line!, for ~a! the FHF and~b! the
MSLC. In ~b! the dashed lines are the densities of the two coex
ing nematic phases at theN-N-I triple point, and only the physi-
cally meaningful OOCPs are shown, cf. Fig. 4~a!.
e
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not a Landau expansion. Still, it is appropriate for our pu
pose; we next discuss why@59#. Let us consider the simple
case of a MSLC at theI -N transition. Katrielet al. @60# have
presented an example of two expansions of the free energ
the framework of MS theory. The first expression is just t
formal ~Taylor! expansion of the MF free energy~in zero
external field!:

F5
JMSLC,int

2T
~T2T* !rh2

22
JMSLC,int

3

105~kBT!2 r3h2
31¯ ,

~55!

wherekBT* 5rJMSLC,int/5. The second expression is derive
in a formally correct way as they describe:

F5
5

2
kB~T2T* !h2

22
25

21
kBTh2

31¯ . ~56!

Note that the coefficients in Eqs.~55! and ~56! are quite
different, but that difference is reduced asT→T* ~e.g., at
T5T* the third-order terms are identical!. Thus one expects
reasonable agreement close toT* . Let us illustrate this with
a simple example: calculate the unstable solutionh2!1 at
T*T* . In this case one can neglect higher-order terms
obtain, from the expansion of the MF FED:

h2'
7

5

T2T*

T S T

T* D 2

, ~57!

or, from the correct Landau free energy:

h2'
7

5

T2T*

T
. ~58!

These results are formally different, but in fact the sam
Indeed, the equations have been obtained by truncating
series after the third-order term. By so doing we restric
ourselves to the leading term in the expansion ofh2 in pow-
ers of (T2T* )/T* , i.e., h2;(T2T* )/T* . However, Eq.
~58! and Eq.~57! differ by higher-order terms only, and ar
therefore equivalent.

Yet it is possible to choose another quantity which will
quantitatively different if calculated by either route: for e
ample, the susceptibility of the isotropic phase. From
Landau expansion we obtain

x5
1

5kB~T2T* !
, ~59!

and from the MF free energy expansion:

x5
1

5kB~T2T* !

T

T*
. ~60!

Now we are no longer restricted toT;T* : the above expres
sions areexact, since no truncation is involved in their der
vation. If we take, e.g.,T51.5T* , we can make the differ-
ence between them appreciably large.

t-
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It is easy to decide which expression is correct. Let us find the susceptibility using the same MF theory: the order pa
in the external fieldH satisfies

h25
*P2~cosu!exp@bJMSLC,intrh2P2~cosu!1bHP2~cosu!#dv

* exp@bJMSLC,intrh2P2~cosu!1bHP2~cosu!#dv
. ~61!
i.
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The susceptibility of the isotropic phase,x5]h2 /]H, is,
from Eq. ~61!,

x5
b@^P2

2~cosu!&02^P2~cosu!&0
2#

12brJMSLC,int@^P2
2~cosu!&02^P2~cosu!&0

2#
, ~62!

where the averages are to be performed at zero field,

^P2
2(cosu)&05*P2

2(cosu) f̂(v)dv with the ODF given by Eq.
~14! for i 52. From Eq.~62! one recovers Eq.~59! when
n2→0, which is the result obtained from the correct Land
free energy expansion.

The reason for the discrepancy is now clear. The susc
tibility of the isotropic phase is calculated from an expre
sion taken at zero field. However, that expression itsel
derived by employing a free energy functional which d
pends upon the field. It is obvious that the same result can
be obtained from another free energy expression valid o
at zero field.

We conclude that in zero external field one can use ei
the correct Landau free energy or the Taylor expansion of
MF expression. However, the latter cannot be called ‘‘La
dau free energy’’ because it is not a true Helmholz free
ergy with the order parameter as an independent variabl
is simply an approximation for the MF free energy at a p
ticular value of the external field. For a different value of t
field the corresponding expansion will also be different a
has to be derived anew. By contrast, the true Landau ex
sion is more general~because it is a correct thermodynam
potential! and can be used foranyvalue of the external field
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APPENDIX: COEFFICIENTS
OF THE LANDAU EXPANSION

The first four coefficients in the expansion of the FE
about the OOCP~Sec. II! are

A25
1

2 F S ]2f

]h2D
r

2
~]2f /]r]h!2

~]2f /]r2!h
G , ~A1!

A35
1

6 F S ]3f

]h3D
r

23Y
]3f

]r]h2 13Y2
]3f

]r2]h
2Y3S ]3f

]r3D
h
G ,

~A2!

A45
1

4! H S ]4f

]h4D
r

23
~]3f /]r]h2!2

~]2f /]r2!h

1YS 24
]4f

]r]h3 112
~]3f /]r]h2!~]3f /]r2]h!

~]2f /]r2!h
D

1Y2S 6
]4f

]r2]h2212
~]3f /]r2]h!2

~]2f /]r2!h

26
~]3f /]r]h2!~]3f /]r3!h

~]2f /]r2!h
D

1Y3S 24
]4f

]r3]h
112

~]3f /]r2]h!~]3f /]r3!h

~]2f /]r2!h
D

1Y4F S ]4f

]r4D
h

23
@~]3f /]r3!h#2

~]2f /]r2!h
G J , ~A3!

whereY5(]2f /]r]h)/(]2f /]r2)h as before. We have als
calculatedA6 with the aid ofMAPLE V but do not present it
here, as it is given by a rather lengthy formula.
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