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Stability of the order-order critical points of Heisenberg and nematic model fluids
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Recently it was found that Heisenberg and nematic model fluids exhibit, for a rarfgegztive values of
the ratioR of anisotropic to isotropic interaction strengths, a new type of critical point corresponding to the
terminus of a first-order phase transition between two orientationally ordered liquids with different densities. In
this paper we present a more systematic and detailed study of these order-order criticalQOGE3. We
start by deriving the equations for the OOCPs and solve them numerically, within a mea(Mfi©ldpproxi-
mation for the free energies of either model. We then investigate local stability by expanding the free energies
in powers of the order parameter, about the lines of OOCPs. In addition, we examine the stability of the
OOCPs with respect to the ordered-liquid—ordered-solid trans{titobal stability, by bifurcation analysis.
We conclude that the MF OOCPs are locally and globally stable over a rarige 0fwhich is much broader
in the case of the Heisenberg fluid, where the ordering transition is continuous. Here the line of OOCPs ends
at a fourth-order critical point on the Curie line, whereas that of the model nematic ends at a critical end point
on the nematic-isotropic coexistence curve. Finally, we discuss the relationship between our approach to the
stability of critical points and Landau theory51063-651X98)07309-1

PACS numbgs): 61.20.Gy, 64.60.Cn, 71.16w

I. INTRODUCTION

Two of the simplest model fluids with anisotropic inter-
actions are the ferromagnetic Heisenberg fllHF) [1] and
the Maier-Saupe liquid crystdMSLC) [2], characterized,
respectively, by the pair potentig8]
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wherer 1, is the intermolecular vector of length,, ; is the
set of orientational coordinatéEuler anglesof moleculei,

o is the diameter of théspherical hard core,P,(x) is the
kth Legendre polynomial, and(r,,) andl(rq,) are the ra-
dial parts of, respectively, the anisotropic and tkeft) iso-
tropic interactions.
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In particular,R determines what types of critical points ob-
tain. These findings are summarized in Tables | and II. If
—1.04<R<0 there is no liquid-vaporl(-V) coexistence, as
the anisotropic attractions are insufficient to drive condensa-
tion for such strong isotropic repulsions. In the case of the
FHF, varying theangesof I (r,) andJ(r,) shifts the cross-
overs to different values R [6] and allows a given type of
diagram to be generated in different wdy, but does not
otherwise introduce any new physics. Interestingly, the same
topologies as the FHF'6or R>0) have surfaced in a Monte
Carlo and MF probe of a symmetrical binary fluid mixture,
where the role ofR is played by the relative strength of
interactions between unlike and like species. This somewhat
unexpected convergence of behaviors was explained, within
Landau theory, by realizing that in either model the density
is coupled with a “spinlike” internal degree of freeddrf].

The possibility, within both MA5] and modified MA 6]
theories, of an order-order critical poi(@OCBP in the FHF
or the MSLC characterized by sakpulsiveisotropic inter-
actions (;y<<0), is noteworthy. However, this has only been
corroborated by a mean spherical approximation study of a
purely anisotropicFHF (I;,,=0) [10], for which simulation
evidence is available buinconclusively seems to favor a
tricritical point instead4]. OOCPs where the ordered phases

Both models exhibit orientationally ordered liquid phases:are nematichave been predicted to occur in systems of rod-
at high enough densities or low enough temperatures, thiike particles with added attractiofi$1—-17; it is as yet un-

former is a ferromagnefl,4—6, and the latter a nematic
[2,7]. Extensive mean-fieldMF) calculations have shown

clear whether these have been observed experimenidly
20]. In the one model that has been simulated, namely, hard

that the overall topology of their phase diagrams dependspherocylinders with attractive square wells, nematic-

sensitively on the ratidR of the integrated strengths of the
isotropic and anisotropic interactions, given by
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nematic (N-N) coexistence is preempted by the formation of
a smecticA phasg[17]. By contrast, in neither the FHF nor

3175 © 1998 The American Physical Society
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TABLE I. Topology of the phase diagram of the FHF from MF thefiys]. A refined calculation using
modified MF theon6] yields crossovers at different values®than MF, but does not change the scenario
qualitatively. CEP: critical end point; TCP: tricritical poihtV: liquid-vapor, OOCP: order-order critical

point.

R Ordering transition(s) Critical point
0<R<0.38 ([5], Fig. 1) Changes order at CEP Isotropic L-V
0.38<R<0.63 ([5], Fig. 2) Changes order at TCP Isotropic L-V
R>0.63; R<-25.2 ([5], Fig. 3) Changes order at TCP None

Continuous above OOCP;
. one continuous, one first order
—25.2<R<-1.04 ([5], Fig. 8) between OOCP and CEP: O0CP

first order below CEP

— 1.04<R<0 Always continuous None
the MSLC is there coupling between orientational and posi- 92f 92f
tional degrees of freedom, and for that reason they do not (5_P2) Ipan
form smectic phaseg21]. If real, the OOCP would be the M= 7
orientational analog of the solid-solid critical points found in 7*f 9*f
Cs, SmS, and Ce-Th mixturg®2-26; in Monte Carlo stud- m 3_772 )

ies of model colloidg§27,28; and theoreticallyf29-44].

In previous work we used molecular theory to calculateThe first necessary condition to have a critical point is that
the different types of phase diagram for both the HBB]  the determinant oM vanish:
and the MSL{ 7], and discussed the criticality of the former
in detail[5]. Here we explicitly locate the OOCPs as a func- P*f\ [ o°f 9%f \2
tion of R, and investigate their stability, both local and glo- detM :(W (W) _<(9p(9,7) =0. (4)
bal. This paper is organized as follows. In Sec. Il we derive K p

the .eq_uations. for the OOCP in a general ﬂuid.with an_isc_)ThiS is the two-dimensiondin (p,7) spacé generalization of
tropic interactions; these are then solved numerically, within, o requirement that the compressibility diverge at tth¥
the MF approximation, for the two models under consider-gyitical point.

ously computed OOCPs by expanding the free energy detheed to find the eigenvectou ) corresponding to the zero
sities about them. Then in Sec. IV we calculate the limit ofeigenvalue oM. This is

stability of the ordered liquid phases of the FHF and MSLC

with respect to the corresponding ordered solids; because

neither model exhibits a smectic phase, this allows us ap- (up)=
proximately to check the global stability of the OOCPs. Fi-
nally in Sec. V we summarize our conclusions, and discus . PR _
the relationship between our approach to local stability an(iu’v) defines a direction irip,) space that can be param

the more common analysis in terms of Landau theory. (Sylsfi (?/05) Ezii aEIsgé ;-III\LI: i?r:gn efg;:)c')twlz ;”gﬁ?jl f%?'r:’

point on the order-disorder lineu(v)=(0,1) (because all
M;;j=0 exceptM,). In the present case of an OOCP, none
II. CRITICALITY of the elements oM is zero, and so we have to use one of
Let f=f(p,7,T) be the Helmholtz free energy density the general expressions of ). This yields the condition
(FED) of a fluid characterized by th@niform) densityp, the  that the third derivative of along the direction,v) vanish
order parametes, and the temperatufg. Then criticality is &t the critical point, i.e.,

studied by considering the stability mati# [5]:
Y J Y 5] o3f &°f o3t
—| +3u® +3uv? >+v3 =0
p

3

u ( 3 2 3
TABLE II. Topology of the phase diagram of the MSLC from ap/, ap=dn dpdn an

MF theory[2,7]. Unlike in the FHF, the ordering transition is al- (6)

ways first order. Abbreviations as in Table I.

Mll M12
1,- M_lg) or (U,U)Z(—M—Zz,l). (5)

3°f

The third and final condition is that in zero field, the FED
R Critical point must not contain any linear dependence on the order param-
eter:

0<R<0.79([7], Fig. 1 IsotropicL-V
R>0.79; R<—1.64([7], Fig. 3 None of
—1.64<R<—1.04([7], Fig. 3 OOCP ( ) =0. (7

an p_
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The free energy density of an orientationally ordered, but
positionally disordered, phase of densityis now
-1 2 1 2
(o, =Fus(p) +pB~XIN[47f (@) ]) = 5 limp
(u,v)
1
=5 Jmp’ (12
e
where fys(p)=pB '[IN(A%)~1]+p¥(p), f(w)=p(w)/p
is the orientational distribution functioODF), and (A)
=[dwAf(w). In Eq. (12), 7 is the orientational order pa-
rameter, defined as
PPe m=f Pi(cos 6)f(w)dw. (13

FIG. 1. Schematic representation of the directionu(, fixed
for each critical point, and along which the free energy is expande
This direction is parametrized by, the order parameter of the
transition, which is linearly related te and 7; .

d(i =1 for the FHF and =2 for the MSLC) Minimizing the
FED with respect to the ODFsee, e.g.[2]), we obtain

Fo)= exf BJinp 17 Pi(cos 0) ]
The critical point p,7.,T.) can now be found by solv- J exd BIinp 7iPi(cos 0)]dew”
ing Egs.(4), (6), and(7) simultaneously, for given choices of o ) ) N
interaction parameters. We thus require expressions for thaubstitution of Eq(14) into Eq.(12) yields, for the equilib-
FEDs of the FHF and the MSLC. In the spirit of perturbation"um FED,
theory, let us write the intermolecular potential as

(14

1 1
F(p.m)=Fus(p) = 50+ 5 Jimp* 1 = pB~ a( BIiep 7).
D(r12,01,02) = Pref( I 12) T Pp(r 12,01, 05), (8

(15)
where ¢,.{r1,) is the hard-spheréHS) “reference” part, where
and ¢,(rip,w;,w,) the longer-ranged “tail” of either
brnr(r12, 01,02) OF Pysc(ri2,w1,w2) in Eq. (1) or (2), sinhx
respectively. The MF Helmholtz free energy is then aFHF(X):m( ) (16)
1
Fp(t,0)1=Felplr,0)1+ 5 [ drydaydrdo, 3
D EX
Xp(ry, 1) ¢p(riz,01,02)p(rz,07), (9) apmsLc(X)=1In , (17)
N
where p(r,w) is the density-orientational profile. The free 2
energy of the reference systerf,{ p(r,w)], consists of o ox e )
ideal-gas and excess contributions, the latter due to the exndD(x) =exp(—x°)[, exp¢)dt is Dawson’s integral.
cluded volume interaction: For consistency with previous wofl6—7], we take
o\ 6
fref[p(r,w)]zﬁ*lj drdwp(r,w){IN[A3p(r,w)]—1} IFHF(rlz):Eiso(r_lz> : (18
+ Frsle(n)], (10 o (r1plo—1)

_ _ Jrnr(r 12) = €ani o (19
where 8=1/kgT, A is the thermal de Broglie wavelength, rolo
p(r)=fdwp(r,w), and the orientational entropy is de-
scribed in the random-mixing approximation. In a uniform ¥ _4-3¢ 20
(or weakly nonuniform fluid, the excess free energy can be B FHF(p)_g(l_g)Z' (20)
treated in a local approximatiofbut see Sec. IV below

lusie(F12) ( - )6 (2D
msLcll12) = €iso| 7|
o)1= [ drp(nW (o), a1 <l

6
with W(p) an excess HS free energy per particle, to be speci- Jusie(r19)= Eani( i) , (22)
fied later. iz
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FIG. 2. () Reduced density* = pa?; (b) reduced temperatutte= KgT 0%/ Igye in; @nd(c) order parametes, at the OOCP of the FHF.

6£—9£2+3¢° ized byR=R,,. This is borne out by Fig. 3, where we plot
BYwmsic(p)=p| —In(1=§&)+ 201—9)° | 23 the quantity Xx= BepcJemrin: clearly x—3 as R—Ryy~
—25.2.

Equations(20) and (23) are, respectively, the Carnahan- !N theé MSLC the corresponding line of continuous
Starling [45] and Percus-Yevickcompressibility [46,47,  disorder-order transitions i8pJysic,n=5, but this is al-
approximations to the excess FED of a HS liquid, ahd Ways inside the nematic-isotropitN¢l) coexistence region
=mpail6 is the packing fraction. [7], thence a less rich critical behavior, see Table Il. In Fig. 4

In what follows all results are given in terms of the re- We show densities, temperatures, and order parameters at the
duced density p* :p0'3 and reduced temperature OOCP and at th&l-N-1 triple point. In contrast to the FHF,
=kgTo%/Ji. In subscripts, ¢” will be used as an abbre- there are now two branches of OOCPs; the lower branch
viation of “OOCP.” (dotted line$ lies outside the region wheid-N coexistence

Figure 2 shows the density, temperature, and order paranis possible[see Fig. 4a)] and is therefore unphysicdin
eter at the OOCP of the FHF, as functionsRofln an earlier  addition, we shall see in the next section that it is also locally
paper[5] we found that the OOCP should transform into aunstable¢. The same is true of that part of the upper branch
tricritical point on the Curie linglthe locus of continuous for which R<—1.64. We conclude that the line of OOCPs
disorder-order transitions of the FHF model, given byfor the MSLC ends at a critical end point on tNeN coex-
BpIeurin=3), at a fourth-order critical poirf48] character- istence curve. One further difference between the FHF and
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40 T T T T T results(for coexistence and criticaliyfollow from an expan-
sion ofg,(p,H,T) in p.
35 1 At constantu andT, we then havg49]
30 S-
9,(n.p.T)= 2 Ay (24)
25
where7=7— 7., and
20 | n=n"1c
X n
1 /dg,
15 } 4 An—m( (977”).'_#. (25
10 F ..
The coefficientsA, are to be evaluated at the OOCP,
51 (pe,mo)- Aq is, of course, the applied field, which can be
calculated in terms of and » using Eq.(15):
0 L L L L L
30 25 20 -15 -0 -5 0 (7977) &f)
A=|—| =|—] =H(p,n). 26)
R 1((9771# i) | (p,m) (

FIG. 3. x=B¢pcJIrurint VS R for the FHF.x approaches 3 &R
— —25.2, meaning that the OOCP is approaching the Curie line
and henceyp,—0.

The other coefficients can also be written in termg ahd
by applying the operato® to the fieldH(p, 7):

a) P*tlapan ( a)
o T 28792y | 94
an ) (9°flap=), \ dp ”

the MSLC is apparent from comparison of Figs. 3 at@:5 @:(ai) =
1

in the latter, the line of OOCPs does not approach the line of
disorder-order transitions¢=5. This is illustrated in Fig.
5(b), which plotsp? vs't.. In the Appendix we collect the expressions foy, A;, and
A, . Notice that Eq(4) and the vanishing of,, and Eq.(6)
and the vanishing o3, give rise to equivalent conditions.
In the spirit of Landau theory49], A, is now expanded in
One of the methods employed [5] to investigate the powers ofT—T [50]:
existence of OOCPs in the FHF was to perform an expansion
of the FED about the Curie line, or the tricritical point, and
analyze the signs of the first six coefficients of that expan-
sion [49]. This enabled us to state that for 06B<< we

have a tricritical point, and foR~ —25.2 a fourth-order V2 d (azf)
&pz
i

(27)

Ill. LOCAL STABILITY

(9172

1
AoT)=Ax(To)+ 5

aT _ZYE dpdn

J (azf) 9 9
p

point. For 0>R=—25.2 the tricritical point becomes un- + T (T—=To), (28)

stable and so a new type of criticality must appear. In the
preceding section, we explicitly calculated the OOCPs; the3(Nith Y=(0%flapan)l(d*f13p?),. Using the fact thatA,
-

correspond to solutions of EgeY), (6), and(7) with 7.#0 and A; vanish at the critical point, Eq24) with Eq. (15
and B.p.Jin>3 or 5, and so their stability cannot be St”diedgives 3t0 fourth order point, Eq24) a- (19

by examining an expansion about the order-disorder line, o
which n.=0; one has to generalize this expansion to non- _ 2
zero .. To obtain the original expansion about the Curie F=Ao(Te.pc, n) +32(Te,po, 70)(T—Te) 7

points, the Helmholtz FED, Eq15), was first Legendre AT ~4 29
transformed to a new thermodynamic potential with vari- (Teope 77, 29
ables 5 (the order parameter of the transitjpp (the field

corresponding to the other dengjtandT. This new poten- where

tial, denotedy, (7,1, T), was then expanded in powers gf 1(1 g [ %

and, because the derivatives @f with respect ton were ax(Te,per W)= 15T (W)

taken at constant, the coefficients of the expansion could K TePe e
be written in terms of derivatives df(p, ) with respect to

both #» and p. In the present problem, one might expand an _ i 7f
appropriate thermodynamic potent@) in the order param- dT dpdn);

eter of the OOCP¢ (see Fig. 1. However, for each OOCP ¢Pe:Te
(i.e., for eachR) the direction (1,v) is fixed in (p,7) space. 9 [ &%f
Thereforeé is linearly related to bothy and p, and one can +Y? T (ﬁ—z) . (30
perform instead an expansion ipor in p, usingg, (7, u,T) Py Te.pg e

or g,(p,H,T). Here we calculate the expansion of
g,(7.1,T) in pabouty, but it can be shown that the same Minimizing Eq. (29) with respect ton, we find as usual
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FIG. 4. (3) Reduced densitp* =pa?; (b) reduced temperature=KkgTo>/Jys,cin; @and (c) order parameter, of the MSLC. Solid
lines: locally stable branch of OOCPs; dotted lines: locally unstable branch of OOCPs. Dashed lines: same quantithés\at tiniple
point.

therefore unstable, as announced in the preceding section.
The two branches are connectedRx —1.91, where the
slope of the curve is infinitéhowever, this point lies in the
unphysical regiohn

o \/az(Tc,pc,m(Tc—T)
a 2A4(Te,perme)

From the linear dependence @f,%) on 4, it is possible to
find a relation betweem andp in the vicinity of the OOCP:

~ ((azf/anz)p)
..

(31

IV. STABILITY WITH RESPECT TO THE SOLID PHASE

(32 The analysis of the stability of the OOCP will only be
e T complete with a study of stability relative to the solid phase
(global stability, i.e., of whether fluid-solid coexistence pre-
Numerical results are presented in Fig. 6. For the FHFempts coexistence of two ordered fluids for any of the values
A4(T¢,pc,mc) is always positive and approaches zero withof R for which the OOCP is locally stable. At first sight, this
vanishing slope aBR— Ry~ —25.2, corresponding to a lo- would not appear to be possible. Indeed, it is short-range
cally stable OOCP over the whole range Rffor which it  repulsive interactions that play the main role in the freezing
exists (see preceding sectiopn For the MSLC, transition, and freezing of HS does not occur unifl
A4(T.,pc,me)>0 along the upper branch of OOCPs, which ~0.945[51], which is far above all OOCP densities of either
are thus locally stable whenever physicdR>—1.64); of our models. Nonetheless, the present OOCPs are obtained
whereas the lower branch ha%s,(T:,p.,7.)<0 and is for systems with softepulsiveisotropic interactions, which

P\ "tlapan
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FIG. 5. (8 x=B¢pcIusLc,nt VS R for the MSLC. Solid line:
locally stable branch; dotted line: locally unstable branch. In con-
trast to the FHRcf. Fig. 3, 7. is always finite(b) p} (=p.0°) vs FIG. 6. Reduced fourth-order coefficiept= B.A4(T¢.pc,7c)
te (=kgTco*/Iusic,n); the straight dashed line is the limit of ab- of the FED expansion about the OOCP fay the FHF andb) the
solute stability of the isotropic phase with respect to the nematicMSLC:; it vanishes on the Curie line. Ifb) the dotted line corre-
X=5. sponds to the unstable branch of OOCPs.

may drive down the freezing density. _ phase with respect to the solid, rather than in characterizing
The easiest way to tackle this problem would be to writeiq fjyig-solid transition, we will use none of the above theo-
down the free energy as in E€LS), changing only the form jag pyt the simpler bifurcation analydis4,55. Here one
of the excess HS part to a solid parametrization. Such gajcylates just the limit of stability of one phadiguid) with
procedure was employed f] for the FHF, but for different  regnect to anothefsolid), and not coexistence between
values ofR than the ones we are interested in. A more elaboy5es.
rate way of deriving an equation of state for the solid can beé Tne pifurcation analysis we adopt has been applied to
found in[32,33, where the interaction part is treated in dif- gome transitions in liquid crystal modes4,55. It states
ferent ways in the liquid and solid phases. However, in bo”’that, if pa(r, @) is an equilibrium density profile of phage
approaches the main features of the solid-liquid transition a8 _(r,w) an equilibrium density profile of phasB, and
determined by the parametrizations chosen for thellg8id Spas(r,®) the difference between the density profiles of the

or solid equation of stateA recent van der Waals theory of ;- phases, then phagewill be stable with respect to phase
the FHF including solid phasd8] did not extend tdR<<0.) B when

In [52] and[53], density-functional theories of the freezing
transition are proposed. Both provide solid equations of
state, and thus enable one to calculate coexistence lines. As

at present we are simply interested in the stability of a fluid f dryde;drodwzdpag(ry,@1) Opag(rz, @2)
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2 * my
P Hp(r,0)] o 2 2 Ham G, Y () =0, (39

Op(ri,w1)9p(ry,w;) p(1,0)=pa(1,0)

where
(33

We are interested in the stability of an ordered ligiptiase
A: pa(r,w)=p_ f (»)] with respect to an ordered solid

[phaseB: pg(r,w)=ps(r)fs(w)]. In Sec. Il we used the
simplest, local, approximation for the excess free energy of
the HS fluid, Eq(11). This is inappropriate when the density
is strongly inhomogeneougand can reach very large values,
where conventional bulk equations of state break dowa

is the case in a solid. We therefore resort to the simplest
nonlocal scheme, the smoothed-density approximation
(SDA) of Tarazond52] for HSs:

Y."Ifz(p,Q)=

o)1= | arp(r ¥ i), (34
Here;(r) is a functional of the density and has the form
o0~ [ arrw(le=r (), 39

where the weighting functiow(|r—r’|) is the quotient be-

tween the Mayer function of two HSs and the second virialwhere m;=—mg,

coefficient of the HS fluid:

B~ 'p
4

[(211+1)(2l+ D] —1)™

+ o0

X >, C(141,1;000C(141 57 ;mymy0) 77,
X=0 —

2
+ 412+ D@+ DI E(p,0)

=@ 1m,m,0m0

p?

CAx

J@)(—D'r (21, +1)(21,+ 1)1

+ oo
XD (=1)M 2C(il 1A ;;000)
)\1,)\2:0

X C(il ;A 1;M;m;0) C(il 51 »;000)

XC(” zhz;mlﬂo) 7])\177)\2, (40)

C(j1j2j;ninyn) are Clebsch-Gordan

(CG) coefficients in the notation df57] and, as beforeij

=1 for the FHF and =2 for the MSLC(in the latter case,

w(r)= (36)

r=o,

which corresponds to “smearing” any peaksg(r) over the
excluded volume of a pair of HSs. We shall retain the same
expressions fo¥(p), Egs.(20) and(23).

By analogy with[56], dp s(r,w) are expanded as prod-
ucts of Fourier and spherical harmonics series:

5PLS(rvw):pL,fL(w)% |Zo mE Mqim

(37

whereq is a reciprocal lattice vector of the Bravais lattice
characterizing the solid phase, avig,(w) are spherical har-
monics describing the difference between the orientational
structures of the two phasésnly evenl are allowed in the
case of a MSLQE Furthermore, we expand the ODF of the
liquid in Legendre polynomials:

Xexp(—iq-r)Yim(w),

2 +1
41

fL(CO):§:

A=0

7P, (cos6). (38

[As in Eq.(37), for the MSLC only ever\ are allowed}
Inserting Eq(37) into Eq.(33) and performing the second
functional derivative ofA p(r,w)], given by Eq.(9) with

algebra, that for each wave vectprthe ordered liquid will
be stable relative to an ordered solid when the following
quadratic form inwgy, is positive definite:

of Eq. (34):

E(p,q)=2V'(p)w(q)+p¥"(p)WA(q),

summations are over evépor A, only). 1(q) andJ(q) are
the Fourier transforms df(r) andJ(r):

IFHF(q):J dr exp(—ig- 1)l gue(r)

oo

siny

| JFHF(q):f dr exp(—iq-r)Jeqe(r)

=3Jruen(do)? 5-dy, (41)
qo Y
_ Jrurint Sin(go) +qo cogqo) 42
B 2qo 1+(qo)? '
IMSLC(q):f dr exp(—iqg-r)lpsic(r)
3 [ siny
=3lmsLe,indd0o) fq V5 dy, (43

JMSLC(q):j dr exp(—iq-r)Jys.c(r)

© siny
:3‘]MSLC,int(q0')3fq V5 dy, (44)

With 1= 4me€,s00°13, Jing=4mean0°/3. In Eq.(40), E(p,q)
Egs.(10) and(34), we find, after straightforward but tedious is the Fourier transform of the second functional derivative

(45)



PRE 58 STABILITY OF THE ORDER-ORDER CRITICA . .. 3183
wherew(q) is the Fourier transform of the weighting func- ) p? 4 36
tion, Eq. (36): —Imsie(d) 75— EJMSLC(q) AT
3 20 , 72 324
w(g)=——=[sin(qgo)—(qo)codqo)]. (46)
q (q0')3[ n(q q qq0)] 497]2+ 497727]4+ 245774 (53
The sums in Eq(40) need to be truncated for practical
purposes. A natural assumption is to retain in the expansion \/— 1 \/— 5
of 8p_g(r,w) the lowest-order terms with the rotational sym- Y Y S8 p 7ot [ (p,q)
metry of the order parameters. This amounts to the restric- 20 4 2 —MsLe
tionsl,,l,=0,1(FHF) orl,,l,=0,2(MSLC). It then follows 5,2
from the properties of CG coefficients that the sums oyer ~ _\op J
terminate at AFHF) or 4 (MSLC). wsLc(d)]72 4w usLc(@)
The limit of stability of the ordered liquid relative to a 5 18
perturbation with the symmetry of an ordered solid with X §n2+77]§+3_5 Dama. (54)

wave vectorq is attained when the determinant ¥fin Eq.
(39) changes sign. Noting thaYml =3 lemzémlmz, Y
can be treated as a rank 2 tensor with indidgsnj;) and
(I,,m,), such thatYm1m25 =0 unlessm;=m,. After

lengthy computatlons, the requirement that Wethange
sign translates into
YgoY(l)lz Y(l)ngl

(FHF), (47)

YooY 2= Y505, (MSLO), (48)
where we have used the fact that, by symme¥}§=Y'
(i=1 or 2 for the FHF or MSLC, respectivelyEquation

(40) then yields, for the FHF,

o B'p PP p?
Yoo= ppe +E[:'FHF(paQ) lene(Q) ] — JFHF(Q)”M,
(49
0 :8 p 392 — 2
Yi,= (1+2772)+ 7T[:FHF(P:Q)_|FHF(Q)]771
p2 1 4 4, o
a7 3 g mt 372, (50)
v37p  VBp® _
Y0=Y0,= 1. Mt [Erne(p,Q) — lene(d) ] 71
V3p? 1 2
_HJFHF(Q) 3t 3mnz, (51)
and, for the MSLC,
B p p
Yoo= A ['—'MSLCpq) Imsic(a) ]
p?
= 27 Jmsec(@) 75, (52)
B p 10 18 5p?
Ygzzﬁ 1+77]2+7774 [*—'MSLC(I) a)

For fixed T and R, Egs. (47) and (48) define implicit
relations betweem and g. The limit of stability (i.e., the
density above which the ordered liquid becomes unstagle
within bifurcation theory, the minimum of the curvp
=p(q). Calculation of this minimum using E¢47) or (48)
generates two conditions that must be solved, together with
Eq. (47) or (48), to find the modulus of the wave vectqy,
that destroys the stability of the ordered liquid phase at the
lowest density, at a temperatufeand for the model charac-
terized byR. Recall that with this theory we merely calculate
the limit of stability of the liquid with respect to a solid of
the same densitfthe undercooling branch of the liquid-solid
spinoda), and not a coexistence curve: the coexistence den-
sity of the ordered liquid with the ordered solid will be a
little lower. FurthermoreY depends omj,,=|q,,| only; this
is a consequence of the decoupling of orientational and po-
sitional degrees of freedom in the present modsée Sec.

). dm=|dm| gives the lattice constant of the metastable solid
that bifurcates from the liquid, but the full symmetry of that
solid lattice can only be determined by going to second order
in perturbation theory(which is beyond the scope of this
papej [58]. Finally, if p(q) should exhibit several minima,
the physically relevant one will be a,,~2wu/o, corre-
sponding to the main peak in the structure fa¢ts].

Results are plotted in Fig. 7. The dashed lines represent
the critical densitiep’ and temperature, for —25.2<R
<—1.04(FHF) and—1.64<R< —1.04(MSLC); these have
been calculated in Sec. Il above. The solid lines are the sta-
bility limits pZ%., for the same values dR and T. At high
temperaturegwhich correspond to large|), the OOCPs are
stable relative to the solid phases, singE<p%,, the
former is typicallyps =0.3 and the lattep%,,;~0.8 (FHF) or
par=0.65(MSLC). For smaller|R| (and, correspondingly,
lower temperaturgs px,, Of the FHF decreases abruptly
(aroundR==—2.5); no such trend is evident in the case of the
MSLC. WhenR= —1.35 (FHF) or R=—1.24 (MSLC), we
start to havepy<ps: (FHF) or ps<psi (MSLC) (where
pyi is the density of the denser of the tW phases at the
N-N-1 triple poiny, meaning that at thes®’'s the OOCPs
become unstable relative to the solid phases, even if they are
stable relative to the other fluid phases ufRte —1.04. This
signals a crossover from liquid-solid to vapor-solid coexist-
ence at low temperatures.
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(a) not a Landau expansion. Still, it is appropriate for our pur-
08 pose; we next discuss wh$9]. Let us consider the simpler
Tl e \ case of a MSLC at the-N transition. Katrielet al.[60] have
o h | presented an example of two expansions of the free energy in
i the framework of MS theory. The first expression is just the
06} i - formal (Taylor) expansion of the MF free energyn zero
i external field:
0.5 | i
! ‘]MSLC' t ‘]E/ISLC' t
,in in
04 s F:T(T—T*)Pﬂg—mp Tt
p* | 5 (55
03} —__’/ -
02l | | wherekgT* = pJys.cin/5- The second expression is derived
’ | in a formally correct way as they describe:
0.1} |-
| > o 2 20 3
. : : , . Fzsz(T—T ) 1m2— z_lkBTﬁz“‘ (56)
30 -2 20 -15 -10 -5 0
R Note that the coefficients in Eq$55) and (56) are quite
(b) different, but that difference is reduced &s-T* (e.g., at
T=T* the third-order terms are identigalhus one expects
1.0 ' ' ' ' reasonable agreement closeTto. Let us illustrate this with
a simple example: calculate the unstable solutiprel at
] e T=T*. In this case one can neglect higher-order terms and
0.8 7 obtain, from the expansion of the MF FED:
R B 2
L A7 _ 7TT-T* ( T )
0.6 -
- ~ =1 (57)
o - Ty T\ T
0.4 - // ] or, from the correct Landau free energy:
/
ozl AN ) 7T-T* 8
\\\\\ 72 5 T
0.0 ' ) ' b These results are formally different, but in fact the same.
2.0 1.8 1.6 R 14 12 1.0 Indeed, the equations have been obtained by truncating the

FIG. 7. Reduced densitigs* =po® at the OOCP(solid line)
and at the limit of stability of the ordered liquid phase relative to
solid fluctuations(dash-dotted ling for (a) the FHF and(b) the
MSLC. In (b) the dashed lines are the densities of the two coexist-
ing nematic phases at th¢-N-1 triple point, and only the physi-
cally meaningful OOCPs are shown, cf. Figay

V. CONCLUSIONS

We have systematically calculated, and investigated the

series after the third-order term. By so doing we restricted
ourselves to the leading term in the expansiomgin pow-

ers of T—T*)/T*, i.e., p,~(T—T*)/T*. However, Eq.
(58) and Eq.(57) differ by higher-order terms only, and are
therefore equivalent.

Yet it is possible to choose another quantity which will be
quantitatively different if calculated by either route: for ex-
ample, the susceptibility of the isotropic phase. From the
Landau expansion we obtain

1
stability of, OOCPs found previously in molecular field theo- X= B (T=T%)" (59
. . . . . B
ries of model ferroelectric and nematic fluids. Furthermore, it
has been established that the OOCPs are both locally and Ld from the ME free eneray expansion:
globally stable over most of the range of temperature and gy exp
potential parameters for which they exist and are physically
meaningful. 1 T (60)

The local stability analysis of Sec. Ill was based on a X Skg(T—T*) T*°
series expansion of theguilibrium microscopic free energy,

Eq. (15), about the line of OOCPs and inspection of the Now we are no longer restricted To~ T* : the above expres-
fourth-order coefficient. This is standard procedure when thaions areexact since no truncation is involved in their deri-
system under study is described by a Landau free energy. hation. If we take, e.g.T=1.5T*, we can make the differ-

the present case, however, the expression we usé28)gis  ence between them appreciably large.
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It is easy to decide which expression is correct. Let us find the susceptibility using the same MF theory: the order parameter
in the external fieldH satisfies

_ JP2(cos 0)exd BIusicin? 72P2(cos 6) + BHP,(cos 0) Jdw
2 I ex BlysLc.mp 72P2(c0s 0) + BHP,(cos 6) |dw

(61)

The susceptibility of the isotropic phasg=dn,/dH, is, through Portuguese Government contract no. PRAXIS XXI/
from Eq. (61), 2/2.1/FIS/181/94. P.I.C.T. acknowledges support from the
Engineering and Physical Sciences Research Co(dd{l.).
BL(P3(cos 6))o—(Pa(co®))5]

= , (62 .
1= Bodue (P COD) ) — (Pl O APPENDIX: COEFEICIENTS
Bpusieinl (P2(cos))o = (P(cosd))s] OF THE LANDAU EXPANSION

X

where the averages are to be performed at zero field, i.e., The first four coefficients in the expansion of the FED

(P3(cos6))o=[P5(cos 6)f(w)dw with the ODF given by Eq.  apout the OOCRSec. I are
(14) for i=2. From Eq.(62) one recovers Eq(59) when

n,— 0, which is the result obtained from the correct Landau L[ o7 (6*t1apan)?
free energy expansion. A2_§ 2] (*lapd), | (A1)

The reason for the discrepancy is now clear. The suscep- P 7
tibility of the isotropic phase is calculated from an expres- 1 ( o3 prr prr 53f
sion taken at zero field. However, that expression itself is Agzg{(—3> -3Y 5 +3Y— 3(—3) :
derived by employing a free energy functional which de- an, Ipdn Ip*dn -,
pends upon the field. It is obvious that the same result cannot (A2)
be obtained from another free energy expression valid only 4 3 ~
at zero field. 4:i (‘?_f> _ L tlapan7)

We conclude that in zero external field one can use either 41| \an® , (9°t19p%),,
the correct Landau free energy or the Taylor expansion of the . 3 o 3 )
MF expression. However, the latter cannot be called “Lan- 4yl a2 f +12 (°f/apan~)(°tldp ‘777))
dau free energy” because it is not a true Helmholz free en- apan® (9°t1ap?),
ergy with the order parameter as an independent variable: it 4 3 5. 2
is simply an approximation for the MF free energy at a par- +v2| 6 I _ (0%tdap“dm)
ticular value of the external field. For a different value of the dp*dn’ (°t13p®),
field the corresponding expansion will also be different and 3 o\ 3614 3
has to be derived anew. By contrast, the true Landau expan- _ (9 fmp‘zﬂ )(‘z flop )n)
sion is more genergbecause it is a correct thermodynamic (9°F19p%),,
potentia) and can be used f@nyvalue of the external field. oyl prr N (agf/apz&n)(agf/apg)n>

3 2 2
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